Journal of Fluorine Chemistry 110 (2001) 117-122 www.elsevier.com/locate/jfluchem # Crystal structures of $AgAF_6$ (A = P, As, Sb, Nb, Ta) at ambient temperatures Kazuhiko Matsumoto^a, Rika Hagiwara^{a,*}, Yasuhiko Ito^a, Osamu Tamada^b ^aGraduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan ^bGraduate School of Human and Environmental Study, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan Received 13 November 2000; accepted 28 January 2001 #### Abstract Structures of AgAF₆ (A = Sb, Ta) have been determined by X-ray single crystal studies at ambient temperatures. AgSbF₆ crystallizes in space group $Ia\overline{3}$ with a=979.85(4) pm, $V=9.4076(12)\times10^8$ pm³, z=8, and AgTaF₆ crystallizes in space group $P4_2/mcm$ with a=499.49(4) pm, c=960.51(8) pm, $V=2.3964(6)\times10^8$ pm³, z=2. Only the crystal system and cell parameters were obtained for the isomorphic AgNbF₆; primitive tetragonal, a=497.80(10) pm, b=960.40(10) pm, $V=2.3799(12)\times10^8$ pm³, z=2. The results of the Raman spectroscopy of AgAF₆ support the obtained structures. The structures are discussed by comparing with that of AgPF₆ and AgAsF₆ which have recently been determined in a series of our study. © 2001 Elsevier Science B.V. All rights reserved. Keywords: AgPF₆; AgAsF₆; AgSbF₆; AgNbF₆; AgTaF₆; X-ray crystallography; Raman spectroscopy #### 1. Introduction Some studies on the structures of silver hexafluorometallates Ag(I)AF₆ (A: pentavalent atom) are available in the literature [1–3]. However, most of the single crystal structures have not been reported until the recent structural work on AgPF₆ and AgAsF₆ by X-ray crystallography [4]. AgPF₆ crystallizes in space group $Fm\overline{3}m$ with a = 755.08(7) pm, $V = 4.3051(12) \times 10^8 \text{ pm}^3, z = 4. \text{ Ag}^+ \text{ and PF}_6^- \text{ ions form}$ a rock salt structure with a three-fold orientational disorder of the anion. The PF₆⁻ is a regular octahedron. Two F atoms, defined as F(1), in a trans-position are located on one of the crystal axes and the other four F atoms, defined as F(2), are located on the lines bisecting the other two crystal axes. The three-fold disorder arises by the choice of crystal axis with 1/3 atomic occupancy at each F site. AgAsF₆ is isostructural with AgPF₆; a = 775.48(21) pm, $V = 4.6634(37) \times$ 10^8 pm^3 , z = 4. It is known that the array of cations and anions in $AgAF_6$ (A = Sb, Nb, Ta) exhibits the cesium chloride type, structural variations arising from the orientations of AF_6^- [1–3]. In [1], the structures of all three $AgAF_6$ were classified into the $KNbF_6$ structure in which AF_6^- is significantly compressed along its three-fold axis forming a compressed CsCl type arrangement of the ions [5]. On the other hand, in [6], $AgNbF_6$ and $AgTaF_6$ were classified in the $KNbF_6$ structure, but $AgSbF_6$ was not. In [3], $AgAF_6$ was classified into $KSbF_6$ structure [7]. In this study, structures of $AgAF_6$ (A = Sb, Ta) at ambient temperatures were determined by X-ray diffraction single crystallography. Raman spectra were also obtained to supplement the structural information. The structure of $AgNbF_6$ was discussed only on the basis of the obtained cell parameters and Raman spectrum. Finally, the structural differences were discussed based on the anion size of $AgAF_6$ (A = P, As, Sb, Nb, Ta). #### 2. Results and discussions For $AgAF_6$ (A = Sb, Ta), the structural data, positional parameters and equivalent isotropic displacement coefficients, and main interatomic distances and angles are summarized in Tables 1–3, respectively. #### 2.1. Crystal structures #### 2.1.1. AgSbF₆ The space group $Ia\overline{3}$ was determined by systematic extinctions. The unit cell of AgSbF₆ is shown in Fig. 1. This structure is different from either KNbF₆ [5] or KSbF₆ ^{*}Corresponding author. Tel.: +81-75-753-5822; fax: +81-75-753-5906. E-mail address: hagiwara@energy.kyoto-u.ac.jp (R. Hagiwara). Table 1 Crystal data and refinement results for $AgAF_6\ (A=Sb,\,Ta)$ | | $AgSbF_6 (74 pm)^a$ | $AgTaF_6 (78 pm)^a$ | |---|----------------------------|--------------------------------| | $\overline{R_1}$ | 0.0582 | 0.0609 | | $R_{ m w}$ | 0.0667 | 0.0709 | | Crystal system | Cubic | Tetragonal | | Space group | $Ia\overline{3}$ | P4 ₂ /mcm | | a (pm) | 979.85(4) | 499.49(4) | | c (pm) | _ | 960.51(8) | | $V \times 10^8 (\mathrm{pm}^3)$ | 9.4076(12) | 2.3964(6) | | z | 8 | 4 | | $\rho_{\rm calc} ({\rm g cm}^{-3})$ | 4.85 | 5.58 | | $\mu \text{ (mm}^{-1})$ | 9.941 | 26.933 | | Crystal size (mm ³) | $0.23\times0.21\times0.15$ | $0.15 \times 0.15 \times 0.15$ | | 2θ range (°) | <60 | $30 < 2\theta < 60$ | | Extinction coefficient $\times 10^{-3}$ | 1.926 | None | | Refinement | Full-matrix | Full-matrix | | | least-square on F | least-square on F | ^a Radius of A(+V) [9]. type [7]. The array of cations and anions is a CsCl type with no compression. The SbF₆⁻ anion is a regular octahedron with the Sb-F bond lengths of 188.2(2) pm and bond angle of $90.0 \pm 0.2^{\circ}$. The bond length is in good agreement with those reported for SbF₆⁻ in other compounds [8]. Four orientations of SbF₆⁻ octahedron occur, the unit cell being a cube containing eight SbF₆⁻. This unit cell coincides with that reported by Cox [2]. The Ag atom is equivalently coordinated by six F atoms from six different SbF₆⁻ around it, forming a distorted octahedron. The shape is roughly described by taking the three diagonal axes out of four from a cube and connecting the ends. The thermal ellipsoid of the Ag atom is elongated towards the non-coordinating SbF₆⁻ ions (Fig. 2) which is facing one of its triangular faces to the Ag atom. All Ag-F distance and Ag-F-Sb bond angle are uniformly equal to 250.5(2) pm and 150.2(2)°, respectively. #### 2.1.2. AgTaF₆ The diffraction patterns of $AgTaF_6$ were typical of twinned crystals. Therefore, the intensity data of the images at the higher angle, where diffraction spots were separated, were selected to perform the structure determination. Table 3 Bond lengths, bond angles, and coordination numbers in $AgSbF_6$ and $AgTaF_6$ | AgSbF ₆ | | | | |---------------------|-----------|-----------------|-----------| | Bond length (pm) | | | | | Ag–F | 250.5(2) | Sb-F | 188.2(2) | | Bond angle (°) | | | | | Trans F-Ag-F | 180.0 | Trans F-Sb-F | 180.0 | | Cis F-Ag-F | 108.1(1) | Cis F-Sb-F | 90.2(1) | | Cis F-Ag-F | 71.9(1) | Ag-F-Sb | 150.2(2) | | Coordination number | | | | | Ag-F | 6 | | | | AgTaF ₆ | | | | | Bond length (pm) | | | | | Ag-F(1) | 291(3) | Ta-F(1) | 188(2) | | Ag-F(2) | 246(2) | Ta-F(2) | 186(3) | | Bond angle (°) | | | | | F(1)-Ta- $F(1)$ | 180.0 | F(1)-Ta- $F(2)$ | 90.0(9) | | F(2)-Ta- $F(2)$ | 488.8(11) | Ag-F-Ta | 162.1(13) | | Coordination number | | | | | Ag-F(1) | 4 | | | | Ag-F(2) | 4 | | | | | | | | Fig. 1. The unit cell and structure of $AgSbF_6$. The origin is set at the Ag position. Table 2 Positional parameters and equivalent isotropic displacement coefficient of AgSbF₆ and AgTaF₆ | Atom | Wyckoff | Occupation | x | у | z | $U_{\rm eq} \times 10^4 \ (\mathrm{pm}^2)$ | |--------------------|---------|------------|-----------|-----------|-----------|--| | AgSbF ₆ | | | | | | | | Ag | 8b | 1.0 | 0.2500 | 0.2500 | 0.2500 | 0.0476(3) | | Sb | 8a | 1.0 | 0.0000 | 0.0000 | 0.0000 | 0.0176(4) | | F | 48e | 1.0 | 0.4368(2) | 0.1128(2) | 0.3580(2) | 0.033(1) | | AgTaF ₆ | | | | | | | | Ag | 2d | 1.0 | 0.5000 | 0.500(5) | 0.250(2) | 0.0310 | | Ta | 2a | 1.0 | 0.0000 | 0.000(5) | 0.000(2) | 0.0394(5) | | F(1) | 4i | 1.0 | 0.7332 | 0.733(5) | 0.000(2) | 0.059(6) | | F(2) | 80 | 1.0 | 0.8119 | 0.188(5) | 0.135(2) | 0.04(1) | Fig. 2. The coordination of F atoms around an Ag atom. Three space group candidates remained possible after the determination of systematic extinctions: $P4_2cm$, $P\overline{4}c2$ and P42/mcm. The structural data determined on the basis of all three space groups were very close to each other. However, when the structure of AgTaF₆ was solved using P4₂cm or $P\overline{4}c2$ space groups, the TaF_6^- octahedron was somewhat distorted (the cis F-Ta-F angles are about 85°), which was not in agreement with the result of Raman spectroscopy discussed below. On the contrary, in the case of $P4_2/mcm$, the cis F-Ta-F angles were refined to be 88.8(11)° or 90.0(9)° giving a regular octahedron of TaF₆⁻. As a result, space group P42/mcm was selected. The unit cell of AgTaF6 is shown in Fig. 3 with the cell parameters shown in Table 1. Although, the unit cell parameters are quite similar to those reported for the KNbF₆ structure [1], the structure differs from this structure in which K⁺ and NbF₆⁻ form a tetragonally compressed CsCl cell [5] by a doubling of the CsCl type cell along the c-axis due to the different orientations of NbF₆⁻. In addition, it should be noted that the shape of NbF₆⁻ octahedra in the KNbF₆ structure is significantly distorted (cis F-Nb-F angle is about 45°). In fact, the structure of AgTaF₆ is closely related to the KSbF₆ structure [7]. Although, the space group obtained in the case of AgTaF₆ $(P4_2/mcm)$ is different from that in the case of KSbF₆ $(P\overline{4}2m)$ due to the difference of the symmetry of AF₆⁻, the configurations of octahedra in both the AgTaF₆ and KSbF₆ are essentially the same. In AgTaF₆, an F–Ta–F axis in TaF₆ octahedron in *trans* is parallel to the diagonal of the ab-plane, and the other four F atoms are placed above and below the plane at the same distance. Two staggered orientations for the TaF₆ octahedron by the choice of the diagonals of ab-plane occur alternately along the c-axis. Fig. 4 shows the schematic illustration of the configuration of TaF₆ octahedra along c-axis. The coordination number of F atoms around Ag atom is difficult to determine unambiguously, because the Ag–F Fig. 3. The unit cell and structure of AgTaF₆. The origin is set at the Ag position. distances of the first- and the second-nearest neighbors are apparently not different. The former (Ag-F(2)) is 246(2) pm, while the latter (Ag-F(1)) is 291(3), respectively. Both the coordination numbers with the nearest F atoms and the second-nearest F atoms is four, and the contribution of the coordination by the secondary neighbor should not be neglected. #### 2.1.3. $AgNbF_6$ X-ray diffraction single crystallography was performed on several AgNbF₆ crystals, but the quality of the crystals was not good enough for refinement. Only the crystal symmetry and cell parameters could be determined in the present study (Table 4). The crystal system of AgNbF₆ is primitive tetragonal, which is the same as that of AgTaF₆. The cell parameters of AgNbF₆ are similar to those for AgTaF₆ because of the similar sizes of Ta and Nb (both the ionic radii are 78 pm [9]). The Raman spectrum of AgNbF₆ Table 4 Some lattice parameters of AgNbF₆ | Crystal system | Primitive tetragonal | | |----------------------------------|----------------------|--| | a (pm) | 497.80(10) | | | c (pm) | 960.40(10) | | | $V \times 10^8 (\mathrm{pm}^3)$ | 2.3799(12) | | | z | 2 | | Fig. 4. Schematic illustration of the configuration of ${\rm TaF_6}^-$ octahedra in ${\rm AgTaF_5}$. is also similar to that of AgTaF₆ as will be discussed below. Taking account of these similarities between AgNbF₆ and AgTaF₆, AgNbF₆ is probably isostructural with AgTaF₆ or has a very closely related structure. #### 2.2. Raman spectra The results of Raman spectroscopy of AgAF₆ are shown in Fig. 5. The peaks assigned as fundamental modes of octahedral AF₆⁻, v_1 , v_2 , and v_5 were observed in all the spectra. The spectrum of AgSbF₆ (Fig. 5a) is somewhat different from that of AgTaF₆ (Fig. 5b) and AgNbF₆ (Fig. 5c). The strong v_1 peak found at 655 cm⁻¹ is accompanied by a weak broad peak at about 680 cm⁻¹. Since the single v_1 mode is observed at 660 cm⁻¹ in KSbF₆ for example [10], one of the possibilities is a split of the v_1 mode. The v_2 mode was observed at 562 cm⁻¹, which is almost the same as reported [11]. Three peaks were observed between 270 and 310 cm⁻¹. According to the structure obtained by X-ray crystallography, the site symmetry of the Sb position is S₆. Therefore, two peaks would arise from the break of the degenerate v_5 (F_{2g}) mode of an O_h molecule. The possible Fig. 5. The Raman spectra of: (a) AgSbF₆; (b) AgTaF₆; (c) AgNbF₆. assignment of the rest is ascribed to the difference band, $v_2 - v_5$. In the spectrum of AgTaF₆ (Fig. 5b), the $v_1(A_{1g})$ and $v_2(E_g)$ modes were observed at 703 and 580 cm⁻¹, respectively. The v_5 mode was split clearly into two peaks at 300 and 265 cm⁻¹, which arise from the similar reason for the peak split as in the case of AgSbF₆, namely the lower symmetry D_{2h} at the Ta position in AgTaF₆. The Raman spectrum of AgNbF₆ was very similar to the spectrum of AgTaF₆. The v_1 and v_2 fundamental modes were observed at 690 and 556 cm⁻¹, respectively, while the v_5 mode also split into two peaks at 295 and 261 cm⁻¹, which would be explained by the same reason as in the case of AgTaF₆. ## 2.3. Structural changes in $AgAF_6$ series (A = P, As, Sb, Nb, Ta) The structural parameters of $AgPF_6$ and $AgAsF_6$ are summarized in Table 5 [4]. $AgPF_6$ and $AgAsF_6$ have the NaCl type array of cation and anion, whereas $AgSbF_6$, $AgTaF_6$, and $AgNbF_6$ have the CsCl type. This difference is explained by the difference of the size of anions. Concerning the structures of $M^+(AF_6)^-$, where M is a univalent atom and A is a pentavalent atom, there is a tendency as in the case of alkaline halides that the array of cations and anions favors NaCl type for small M^+ and CsCl type for large M^+ [1–3,6]. NaAF $_6$ compounds mostly crystallize in the NaCl type, whereas KAF $_6$ take a CsCl type array of the Table 5 The structural parameters of $AgAF_6$ (A = P, As) [4] | | AgPF ₆ (52 pm) ^a | AgAsF ₆ (60 pm) ^a | |----------------------------|--|---| | Lattice constant (pm) | 755.08(7) | 775.48(21) | | A-F bond length (pm) | F(1) 156(5)
F(2) 159(3) | F(1) 166(4)
F(2) 169(2) | | F-A-F bond angle (°) | 90 | 90 | | Averaged CN of F around Ag | 10 F(1) 2
F(2) 8 | 10 F(1) 2
F(2) 8 | | Ag-F distance (pm) | F(1) 222(5)
F(2) 288(3) | F(1) 222(5)
F(2) 294(3) | | | | | ^a Radius of A(+V) [9]. ions. The size of the Ag^+ cation is just between these two cations and seems to take the array of the ions depending on the size of the anions. Although, both AgSbF_6 and AgTaF_6 belong to CsCl type, structural difference was observed due to the orientation of anions. It is possible that the cubic–tetragonal phase transition occurs by a small temperature difference. The average coordination number of F atoms around Ag atom in AgPF₆ and AgAsF₆ is 10 [4], while in the case of AgSbF₆ the coordination number is six. As stated above, the coordination number in AgTaF₆, crystallographically speaking, is four but the contribution of the secondary neighbor is not neglected. Anyway, there seems to be a tendency that the coordination number of F atoms around Ag decreases as the anion size increases. In order to verify this tendency, it is necessary to check the potassium and silver salts with larger anions whose structure have not yet been determined unambiguously. #### 3. Experimental #### 3.1. General experimental procedures The reactions were mainly performed in FEP (fluoroethylene–propylene copolymer) containers connected to a vacuum line made of SUS316 stainless steel. Solids used in this study were handled in a glove box under a rigorously dried and deoxygenated argon atmosphere. Raman spectra of powdered samples sealed in quartz capillaries (5 mm i.d.) were obtained at ambient temperatures by a BIO-RAD FTS-175C spectrometer using a Nd:YAG laser, with power of 600–1000 mW. ### 3.2. Synthesis and crystal growth HF (Daikin Industries, purity > 99%) was dried over K_2NiF_6 (Ozark-Mahoning). AgF (Nacalai Tesque) was used after dissolving in HF and recrystallization to eliminate oxide impurities. AgAF₆ (A = Nb, Sb, Ta) were prepared by the reaction of AgF with excess SbF₅ (PCR, purity = 97%), NbF₅ (Ozark-Mahoning) and TaF_5 (Ozark-Mahoning) in HF. Using a T-shaped FEP tube, a saturated solution of $AgAF_6$ was prepared at one end of the tube and then decanted into the other end. Single crystal growth was performed at ambient temperatures by eliminating HF very slowly from the solution by cooling one end of the tube by water. Slow elimination of HF controlled by a valve was also successful to grow crystals. In a few days, single crystals were formed on the wall of the tube. After the residual solution was decanted back to the first end, HF was evacuated through a soda lime trap by a vacuum pump. By monitoring by a microscope equipped with a CCD camera, the single crystals were recovered in the argon atmosphere. A selected crystal was transferred and immobilized in the pre-sealed narrower end of a quartz capillary. #### 3.3. X-ray crystallographic procedures The sealed capillary was fixed on a brass pin with adhesive to mount on a goniometer head. The data was collected at ambient temperatures using a Nonius KappaCCD diffractometer with a CCD detector and an anode using monochromated Mo Kα radiation. The power output was controlled in the range of 20-40 mA at a fixed voltage of 50 kV. The distance of the crystal to the detector was kept at 25 mm. The obtained CCD diffraction images were processed by using a graphical image processor DENZO-SMN [12]. The maXus [13] was used for determination and refinement of the structures, and the SORTAV [14] was used for absorption correction. Final refinement was performed by introducing anisotropic thermal parameters for all the atoms. Crystallographic data for the structures in this paper have been deposited with the Fachinformationzentrum Karlsruhe (FIZ) as supplementary publication nos. CSD 411795 and CSD 411796. Copies of the data can be obtained, free of charge, on application to FIZ, abt. PROKA, 76344 Eggenstein-Leopoldshafen, Germany (Tel.: +49-7247-808-205; e-mail: crysdata@fiz-karlsruhe.de). #### References - R.D.W. Kemmitt, D.R. Russell, D.W.A. Sharp, J. Chem. Soc. (1963) 4408–4413. - [2] B. Cox, J. Chem. Soc. (1956) 876-878. - [3] A.F. Wells, Structural Inorganic Chemistry, 5th Edition, Clarendon Press, Oxford, 1984, pp. 456–458. - [4] K. Kitashita, R. Hagiwara, Y. Ito, O. Tamada, Solid State Sci. 2 (2000) 237–241. - [5] H. Bode, H.V. Döhren, Acta Cryst. 11 (1958) 80-82. - [6] D. Babel, Structural chemistry of octahedral fluorocomplexes of the transition elements, in: C.K. Jorgensen, J.B. Neilands, R.S. Nyholm, D. Reinen, R.J.P. Williams (Eds.), Structure and Bonding, Vol. 3, Springer, New York, 1967, pp. 5–12. - [7] G.J. Kruger, C.W.F.T. Pistorius, A.M. Heyns, Acta Cryst. B32 (1976) 2916–2918. - [8] B.A. Fir, M. Gerken, B.E. Pointner, H.P.A. Mercier, D.A. Dixon, G.J. Schrobilgen, J. Fluorine Chem. 105 (2000) 159–167. - [9] R.D. Shannon, Acta Cryst. A32 (1976) 751–767. - [10] A.I. Popov, A.V. Scharabarin, V.F. Sukhoverkhov, N.A. Tchumaevsky, Z. Anorg. Allg. Chem. 576 (1989) 242–254. - [11] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A. Theory and Applications in Inorganic Chemistry, 5th Edition, Wiley/Interscience, 1997, pp. 216–218. - [12] Z. Otwinowski, W. Minor, Processing of X-ray diffraction data - collected in oscillation mode, in: C.W. Carter Jr., R.M. Sweet (Eds.), Methods in Enzymology, Vol. 276, Academic Press, New York, 1997, pp. 307–326. - [13] S. Mackay, C.J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures, Nonius, MacScience, The University of Glasgow, Glasgow, 1999. - [14] R.H. Blessing, Acta Cryst. A51 (1995) 33-38.